Magnetization of Martian lower crust: Revisited
نویسندگان
چکیده
منابع مشابه
Magnetization of the lunar crust
[1] Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magneti...
متن کاملElemental composition of the Martian crust.
The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc...
متن کاملHydrothermal Alteration of the Martian Crust: an Experimental Approach
Introduction: On Mars, the geomorphology of numerous surface features has been attributed to the interaction of magmatic and impact heat sources with an H 2 O-rich Martian crust/megaregolith [1-3]. In addition , geochemical analyses of soil at the Pathfinder and Viking landing sites indicate high concentrations of SO 3 and Cl [4-6], consistent with interaction between a basaltic protolith and f...
متن کاملConstraints on the composition and petrogenesis of the Martian crust
[1] Spectral interpretation that silicic rocks are widespread on Mars implies that Earth’s differentiated crust is not unique. Evaluation of observations bearing on the composition of the Martian crust (Martian meteorite petrology and a possible crustal assimilant, analysis of Mars Pathfinder rocks, composition of Martian fines, interpretation of spacecraft thermal emission spectra, and inferre...
متن کاملLong-Term Evolution of the Martian Crust-Mantle System
Lacking plate tectonics and crustal recycling, the long-term evolution of the crustmantle system of Mars is driven by mantle convection, partial melting, and silicate differentiation. Volcanic landforms such as lava flows, shield volcanoes, volcanic cones, pyroclastic deposits, and dikes are observed on the martian surface, and while activity was widespread during the late Noachian and Hesperia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research
سال: 2007
ISSN: 0148-0227
DOI: 10.1029/2006je002824